

COMBAT PARAMEDIC/

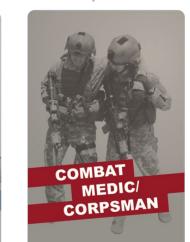
TACTICAL COMBAT CASUALTY CARE COURSE

MODULE 18: BURNS

TCCC TIER 1 All Service Members **TCCC** TIER 2 Combat Lifesaver

TCCC TIER 3 Combat Medic/Corpsman

TCCC TIER 4 Combat Paramedic/Provider


TACTICAL COMBAT CASUALTY CARE (TCCC) ROLE-BASED TRAINING SPECTRUM

ROLE 1 CARE

NONMEDICAL PERSONNEL

MEDICAL

PERSONNEL

YOU ARE HERE

STANDARDIZED JOINT CURRICULUM

1 x TERMINAL LEARNING OBJECTIVES

- Given a combat or noncombat scenario, perform assessment and initial treatment of burns during Tactical Field Care in accordance with CoTCCC Guidelines.
- 20.1 Identify the specific scene safety issues and actions required of a trauma casualty with burns before evaluation and care of the casualty.
- Identify types and severity of burns in accordance with the conventional burn classification.
- Identify how to estimate the body surface area burned using the Rule of Nines.
- Identify airway considerations and management techniques for burn casualties in Tactical Field Care.
- Demonstrate the application of a dry dressing to a burn casualty in accordance with CoTCCC Guidelines.
- Describe hypothermia prevention techniques in a severely burned casualty IAW CoTCCC Guidelines.
- Demonstrate techniques used to prevent heat loss in a severe burn casualty in accordance with CoTCCC 20.7 Guidelines.
- 20.8 Describe burn fluid resuscitation in Tactical Field Care.
- Demonstrate burn fluid resuscitation calculations for a severely burned casualty in Tactical Field Care
- 20.10 Identify the indications, contraindications, and administration methods of lactated Ringer's in Tactical Field Care.
- **20.11** Identify any evidence-based medicine, best practices, casualty data, and Subject Matter Expert consensus on burn management techniques in Tactical Field Care.

11 x ENABLING LEARNING OBJECTIVES

Three PHASES of TCCC

1 CARE UNDER FIRE (CUF) / THREAT 2

TACTICAL FIELD CARE (TFC)

3

TACTICAL EVACUATION CARE (TACEVAC)

RETURN FIRE AND TAKE COVER

WORK UNDER COVER AND CONCEALMENT

MORE DELIBERATE
ASSESSMENT AND PREEVACUATION PROCEDURES

NOTE: This is covered in more advanced TCCC training!

MARCH PAWS

LIFE-THREATENING

#1 Priority

- A AIRWAY
- RESPIRATION (Breathing)
- CIRCULATION
- HYPOTHERMIA /
 HEAD INJURIES

AFTER LIFE-THREATENING

- **A** ANTIBIOTICS
- W WOUNDS
 - S SPLINTING

POTENTIAL BURN CAUSES IN TFC

EXPLOSIONIED / VBIED

VEHICLE/ AIRCRAFT CRASHES

POTENTIAL BURN CAUSES IN TFC

From 2001 – 2018:

2507 surviving
service members
sustained 5551
burn injuries while
deployed

NOTE: 30% of all burn casualties sustained Traumatic Brain Injuries

EXPLOSIONS (IED/VBIED)

Blast accounted for 82% of burn casualties;
 80% were by IEDs

VEHICLE / AIRCRAFT CRASHES

 65% burned while driving/riding in a vehicle; 23% dismounted

INHALATION INJURY

Inhalation injury in 10%

BURN WOUNDS

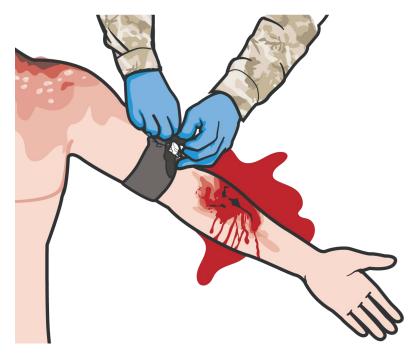
The U.S. Army Institute of Surgical Research (USAISR) leads burn care efforts for the U.S. military

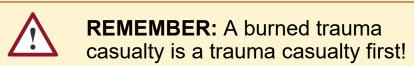
BURN WOUNDS are an injury to skin or other tissues caused by heat, electricity, or chemicals and are present in **5%** to **15%** of combat casualties

Burn patients have unique management challenges and consideration.

The combination of **burn** and **non-burn injuries** results in a synergistic increase in mortality

Significant advancements in the care of burn casualties have been made in recent conflicts





FOLLOW MARCH PAWS

- Follow the MARCH PAWS sequence to address ALL life-threatening injuries.
- All trauma treatments can be performed on or through burned skin
- Burn wounds may be distracting, despite the increase of synergistic mortality immediate death is unlikely
- Depending on the source of the burn special consideration must be taken when providing care

IN CASE OF ELECTRICAL AND THERMAL INJURY

- **Secure** the power, if possible
- Otherwise, **remove** the casualty from the electrical source using a nonconductive object, such as a wooden stick
- **Move** the casualty to a safe place

- STOP the sources of the burning
- **Assess** and **manage** the burn, cut the clothing from around the burned area and gently lift it away
- Be sure to avoid grabbing or further damaging burned areas

NOTE: If clothing is stuck to the burn, ensure you cut around the clothing and leave it in place

IN CASE OF CHEMICAL INJURY

Advise all first responders of the presence of a chemical burn

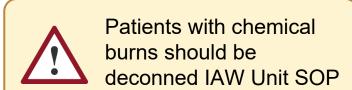
EXAMPLE

An example of a chemical is **WHITE PHOSPHORUS**

SOURCE

Commonly found incendiary in munitions; it is also found in fertilizers, pesticides, and fireworks

SIGNS & TREATMENTS


Ignites spontaneously in contact with air; produces yellow flame and white smoke in the wound bed

Submerse the burned area in water

Apply wet barrier (water-soaked gauze, clothing, mud, etc.) with an occlusive dressing

SEVERITY OF BURN

BURNS ARE CLASSIFIED BY THE DEPTH OF THE WOUND

SUPERFICIAL

1ST DEGREE BURNS

These burns are painful and erythematous without blistering or open wounds. An example of a superficial burn is sunburn.

PARTIAL THICKNESS

2ND DEGREE BURNS

Bright red to mottled in appearance and wet to the touch. Blisters are commonly seen in superficial partial-thickness burns.

FULL THICKNESS

3RD DEGREE BURNS

May appear charred or whitish in color, dry, leathery, and insensate. Thrombosed blood vessels may be visible.

SUBDERMAL BURN

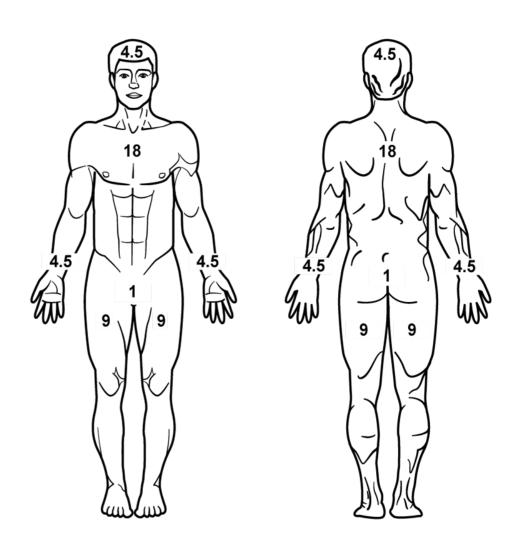
4th DEGREE BURNS

Subdermal burns extend through subcutaneous tissue into fascia, muscle, and even bone.

RULE OF NINES

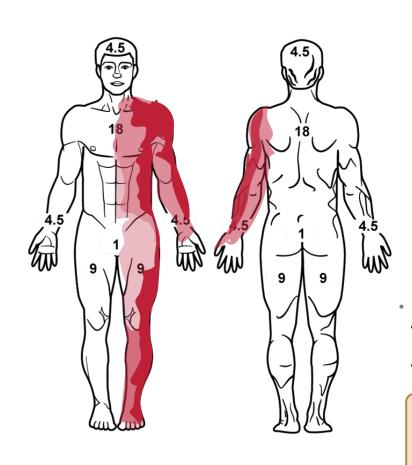
11 areas that each have 9% body surface area (head, upper extremities, front and back of lower extremities, and front and back of the torso having TWO 9% areas)

- Palm size represents ~1%
- Estimate/round up to nearest 10%


If half of the front or rear area is burned, the area would be half of the area value

Estimation Example:

- **Half** of the front upper/lower extremity is 4.5%
- Half of the front upper/lower torso is 9%


DO NOT include first-degree wounds in this assessment

CALCULATING RULE OF NINES

RULE OF NINES:

9% Left half of anterior torso

Front and back of left upper extremity

Anterior portion of left lower extremity

Total Body Surface Area (TBSA) Burned = 27%

NOTE: For estimation of fluid resuscitation requirements this would be rounded up to 30%

BURNED AREAS STATS

From 2001 through 2018, 2507 surviving SVMs

TBSA:

- 92% of burns were small
- < 20% TBSA</p>

HEAD:

- Most frequent burn site
- 29% of all burns

HANDS:

- 2ND most frequent burn site
- 19% of all burns

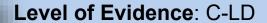
CPP TCCC

AIRWAY MANAGEMENT

IN BURN CARE

Findings suggestive of **Inhalation Injury** include:

- Facial burns
- Carbonaceous sputum
- Stridor
- Hoarseness
- Cough



STOP the burning process immediately!

If the casualty was in an enclosed space such as a vehicle, a building, or a burning compartment in a ship at sea, suspect inhalation injury

27% of combat burn casualties had an associated inhalation injury

AIRWAY MANAGEMENT IN BURN CARE (cont.)

AIRWAY CONSIDERATIONS

- Facial burns, especially in closed spaces, may be associated with inhalation injury
- Aggressively monitor airway status and oxygen saturation
- NPAs and EGAs may not suffice for respiratory distress or oxygen desaturation, an advanced airway may be required
- Ensure the ETT in casualties with facial burns is critical to prevent catastrophic airway loss
- Burn casualties may also require intubation due to decreased mental status

RESPIRATION CONSIDERATIONS

- Follow airway evaluation with assessment of bilateral breath sounds and pulse oximetry
- The presence of an inhalation injury may cause delayed respiratory failure that can occur 15 to 60 minutes after the injury
- Burning compounds can release a variety of chemicals such as carbon monoxide and cyanide, all burn casualties should receive 100% oxygen
- Full-thickness burns across the chest can impair breathing by inhibition of chest wall motion

Level of Evidence: C-LD

BURN CARE

REMOVE watches and jewelry from burned area

COVER the burn area with dry, sterile dressings

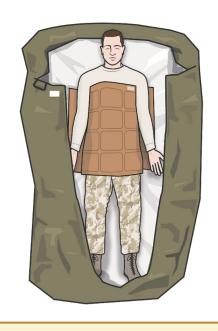
NOTE: Loosely wrap dressings to avoid constricting burned skin to allow for swelling

IMPROVISED DRESSINGS include clean dry clothing or sheets

HYPOTHERMIA PREVENTION

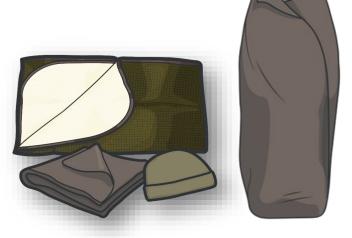
For extensive burns (>20%), place the casualty in a Heat-Reflective Shell or Blizzard Survival Blanket

NOTE: For large surface area burns, the HPMK can act as a dressing in addition to hypothermia management



BURN CARE AND HYPOTHERMIA PREVENTION

For EXTENSIVE BURNS (>20%),


consider using **ACTIVE** warming supplies to cover the burned areas and prevent hypothermia

ANALGESIA may be administered to treat burn pain **ANTIBIOTIC** therapy **NOT** indicated solely for burns

Burn patients are particularly susceptible to hypothermia

Extra emphasis should be placed on barrier heat loss prevention methods

BURN FLUID RESUSCITATION

Fluid resuscitation for burn casualties is guided by the USAISR Rule of Ten

For burns > 20% TBSA, initiate fluid resuscitation as soon as IV/IO access established

For burns ≤ 30% TBSA, consider administration of oral fluids, if casualty is conscious and able to swallow

Use Lactated Ringer's and normal saline

(If Hextend® is used, no more than 1000 ml should be given, followed by lactated Ringer's or normal saline as needed)

Initial IV/IO fluid rate is %TBSA x 10 ml/hr for adults 40-80 kg

NOTE: For every 10 kg ABOVE 80 kg, increase initial rate by 100 ml/hr

REMEMBER: If hemorrhagic shock is also present, resuscitation for hemorrhagic shock takes precedence over resuscitation for burn shock

ADMINISTRATION OF LACTATED RINGERS

IN TACTICAL FIELD CARE

Lactated Ringers is indicated in:

- Burns greater than 20% TBSA
- Provides electrolytes, calories, and source of water for hydration

ROUTES OF ADMINISTRATION:

Intravenous (IV)/Intraosseous (IO)

SUPPLY:

250ml, 500ml, and 1000ml bags

SOLUTION CLASS:

Isotonic Crystalloid Solution

CONTRAINDICATIONS:

Heart failure, renal failure, or suspected hyperkalemia, severe metabolic acidosis or alkalosis, severe liver disease or anoxic states

DO NOT administer Lactated Ringer's Injection, simultaneously with citrate anticoagulated/preserved blood through the same administration set

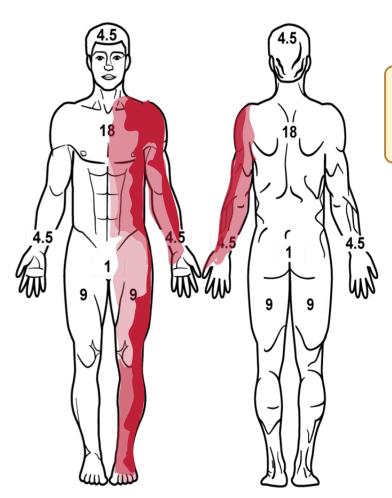
POTENTIAL SIDE EFFECTS:

Allergic reactions, fever, infection at injection site, or redness/red streaking and swelling from the site of injection

DRUG INTERACTIONS:

Ceftriaxone, Corticosteroids or Corticotropin

TACTICAL CONSIDERATIONS:


Monitor closely for signs of circulatory overload

Use caution in casualties with hypervolemia, renal insufficiency, urinary tract obstruction, or impending or frank cardiac decompensation

BURN FLUID CALCULATION PRACTICE

NOTE: For estimation of fluid resuscitation requirements round TBSA to the **nearest 10**

BURNED AREAS:

9% Left half of anterior torso

Front and back of left upper extremity

Anterior portion of left lower extremity

27% = Total Body Surface Area (TBSA) Burned

NOTE: *For every 10 kg **ABOVE** 80kg, increase initial rate by 100 ml/hr

PAWS

Using the **USAISR Rule of Ten** (%TBSA x 10 ml/hr for adults 40-80 kg) calculate the burn resuscitation fluid rate required:

Example #1: 36-year-old SVM with 27% TBSA (2nd and 3rd degree) burned who weighs 74kg:

30 (%TBSA) x 10 (ml/hr) = 300ml/hr


Example #2: 22-year-old SVM 54% TBSA (2nd and 3rd degree) burned who weighs 95kgs:

50 (%TBSA) x 10 (ml/hr) + 100 (*10kg) = 600ml/hr

SKILL STATION

Burn Treatment (Skill)

EVIDENCE SUPPORTING BURN TREATMENT STRATEGIES

Subject Category	Study Types	Level of Evidence
Strategies & Techniques for Burn Resuscitation	Meta-analysis of retrospective observational studies; lab evaluations with limitations	C-LD
Treatment of Chemical Burns	Retrospective observational study	
Airway Management	Retrospective observational registry study & Retrospective observational study with limitations	C-LD

ASSESSING THE EVIDENCE FOR GUIDELINES

Level of Evidence	AHA Recommendation System Terminology Explanation	Why the AHA Classification System?	
A	Evidence from multiple randomized clinical trials (RCT) with concordant results or from HIGH-QUALITY meta-analyses.	The level of evidence recommendations allow readers to quickly glean information on	
B-R	Evidence from moderate-quality trials, or a meta-analysis of moderate quality (RCT) followed by an R to denote RANDOMIZED studies	the strength, certainty, and quality of evidence supporting each recommendation.	
B-NR	Evidence from moderate-quality trials, or a meta-analysis of moderate quality followed by NR to denote NON-RANDOMIZED studies	 A recommendation with Level of Evidence (LOE) C does not imply that the recommendation is weak. Although, RCTs are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective. 	
C-LD	There is no convincing evidence and is followed by LD to indicate LIMITED DATA		
C-EO	There is no convincing evidence and is followed by EO if the consensus is based on EXPERT OPINION , case studies or standards of care.		

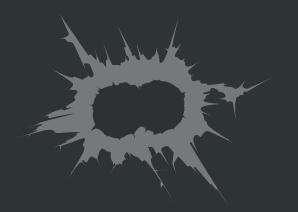
SUMMARY

Knowledge Topics

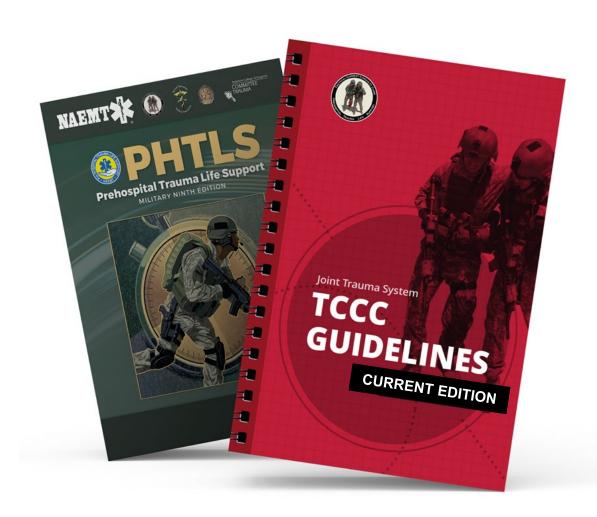
- Treatment priorities in trauma and burn casualties
- Airway considerations in burn casualties
 Potential causes of burns
- Types of burns (Electrical, Thermal, and Chemical)
- Severity of burn injuries according to depth
- Estimating burn size with the Rule of Nines
- Evidence supporting the burn management

Skills and Abilities

- Application of dry sterile dressings
- Hypothermia prevention and management for burn casualties
- Burn fluid resuscitation calculation and administration


CHECK ON LEARNING

- What are approved improvised burn dressing materials?
- What should you do first when you encounter a casualty with a thermal burn?
- (?) What size burn requires IV/IO fluid resuscitation?
- What would be the fluid infusion rate for a 90 kg person with a 40% burn according to the USAISR Rule of Ten?
- What is the maximum amount that should be given if Hextend® is used for fluid resuscitation?



REFERENCES

TCCC: Guidelines

by JTS/CoTCCC

These guidelines, updated regularly, are the result of decisions made by CoTCCC in exploring evidence-based research on best practices.

PHTLS: Military Edition, Chapter 25 by NAEMT

Prehospital Trauma Life Support (PHTLS), Military Edition, teaches and reinforces the principles of rapidly assessing a trauma patient using an orderly approach.